Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Adrienne A. Thorn, ${ }^{\text {a* }}$ Roger D. Willett ${ }^{\text {a }}$ and Brendan Twamley ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Washington State University, Pullman, WA 99164, USA, and
${ }^{\text {b }}$ University Research Office, University of Idaho, Moscow, ID 83844, USA

Correspondence e-mail: aathorn@wsu.edu

Key indicators

Single-crystal X-ray study
$T=83 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.019$
$w R$ factor $=0.045$
Data-to-parameter ratio $=26.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

N-Methylethylenediammonium tetraiodocadmium(II)

The title compound, $\left(\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{~N}_{2}\right)$ [CdI ${ }_{4}$] [abbreviated (MEDA)$\left.\mathrm{CdI}_{4}\right]$, contains isolated N-methylethylenediammonium cations and tetrahedral tetraiodidecadmate(II) anions, forming segregated layers. Hydrogen bonding between cations and anions provides three-dimensional stability to the crystal structure.

Comment

The (MEDA) CdI_{4} structure, (I), is composed of isolated tetrahedral $\left[\mathrm{CdI}_{4}\right]^{2-}$ monomeric anions and individual N methylethylenediammonium (MEDA) cations, as displayed in Fig. 1. There does not appear to be any unusual distortion in the metal-halide structure due to the presence of the MEDA cation. The cadmium coordination involves $\mathrm{Cd}-\mathrm{I}$ bond distances of 2.7958 (8), 2.7857 (7), 2.7736 (7), and 2.7683 (7) A , with bond angles ranging between 104.82 (3) and $113.023(13)^{\circ}$. The average $\mathrm{Cd}-\mathrm{I}$ distance for isolated $\left[\mathrm{CdI}_{4}\right]^{2-}$ anions from the Cambridge Structural Database (Version 5.24 of November 2002; Allen, 2002) is 2.778 (8) ${ }^{\circ}$ [Cd-I range 2.728-2.813 \AA and $\mathrm{I}-\mathrm{Cd}-\mathrm{I}$ bond angle range 101.98-118.46 ${ }^{\circ}$.

Both the CdI_{4} anions and the MEDA cations form individual layers that run parallel to the $a b$ plane (Fig. 2). Three-dimensional stability is achieved through hydrogen bonding between these layers by the $\mathrm{NH}_{3}{ }^{+}$groups on one side and the $\mathrm{NH}_{2}{ }^{+}$groups on the other side of each cation layer (Fig. 2). Table 1 lists the various hydrogen-bond contacts.

The secondary ammonium group of the MEDA cation has one normal and one bifurcated hydrogen bond, resulting in asymmetrical $\mathrm{H} \cdots$ I contacts. The primary ammonium group has two bifurcated hydrogen bonds (see Table 1). This unique arrangement of hydrogen bonding forces the trans,gauche conformation of the MEDA cations (Fig. 2).

Experimental

Crystals were prepared by the slow evaporation of a solution containing (MEDA) $\mathrm{I}_{2}(0.655 \mathrm{~g}, 2 \mathrm{mmol})$ and $\mathrm{CdI}_{2}(1.465 \mathrm{~g}, 4 \mathrm{mmol})$ dissolved in 20 ml of deionized water and acidified by 10 drops of 1 M HI. The resulting crystals were fragile colorless parallelepipeds.

Received 18 June 2003
Accepted 23 June 2003
Online 23 August 2003

Figure 1 at the 50% probability level.

Crystal data

$\left(\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{CdI}_{4}\right]$
$M_{r}=696.15$
Monoclinic, $P 2_{1} / c$
$a=8.4114$ (17) \AA
$b=10.891$ (2) A
$c=15.245$ (3) \AA
$\beta=100.55(3)^{\circ}$
$V=1372.9(5) \AA^{3}$
$Z=4$
Data collection

Bruker/Siemens SMART APEX diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.189, T_{\text {max }}=0.349$
17982 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.045$
$S=1.16$
2418 reflections
91 parameters
H -atom parameters constrained

The asymmetric unit of the structure. Displacement ellipsoids are drawn
$D_{x}=3.368 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation

Cell parameters from 7493
reflections
$\theta=2.5-30.0^{\circ}$
$\mu=10.54 \mathrm{~mm}^{-1}$
$T=83$ (2) K
Parallelepiped, colorless
$0.20 \times 0.10 \times 0.10 \mathrm{~mm}$

.

2418 independent reflections 2320 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-10 \rightarrow 10$
$k=-12 \rightarrow 12$
$l=-18 \rightarrow 18$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0117 P)^{2}\right. \\
& +1.6835 P \text {] } \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\text {max }}=0.73 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.56 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 4-\mathrm{H} 4 A \cdots \mathrm{I} 4^{\mathrm{i}}$	0.92	3.01	$3.652(4)$	129
$\mathrm{~N} 4-\mathrm{H} 4 A \cdots \mathrm{I} 2^{\mathrm{i}}$	0.92	3.15	$3.695(4)$	120
$\mathrm{~N} 4-\mathrm{H} 4 B \cdots \mathrm{I} 1^{\text {ii }}$	0.92	2.76	$3.565(4)$	147
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{I} 3$	0.91	2.81	$3.526(4)$	136
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{I} 4^{\text {iii }}$	0.91	3.27	$3.779(4)$	118
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{I} 1^{\text {iv }}$	0.91	3.07	$3.691(4)$	127
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{I} 3^{\text {iv }}$	0.91	3.27	$3.945(4)$	133
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{I}^{\mathrm{v}}$	0.91	2.70	$3.607(4)$	177

Symmetry codes: (i) $-x, y-\frac{1}{2},-\frac{1}{2}-z$; (ii) $x-1, \frac{3}{2}-y, z-\frac{1}{2}$; (iii) $-x, 2-y,-z$; (iv)
$-x, 1-y,-z$; (v) $x-1, y, z$.

Figure 2
Illustration of the MEDA cation and the CdI_{4} anion layers parallel to the $a b$ plane. The dashed lines represent hydrogen bonds. Only the two central cations (labeled A) show all of the $\mathrm{H} \cdots$ I interactions.

H atoms were positioned geometrically and refined using a riding model, with $U_{\text {iso }}$ for the secondary $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ groups constrained to be $1.2 U_{\text {eq }}$ of the carrier atom, while those of the primary $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ protons were set at $1.5 U_{\text {eq }}$. There is a residual of 0.727 e \AA^{-3} ca $0.703 \AA$ from Cd1.

Data collection: SMART (Bruker, 2002); cell refinement: SAINTPlus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: $\operatorname{SHELXTL}$; molecular graphics: $S H E L X T L$; software used to prepare material for publication: SHELXTL.

This work was supported in part by ACS-PRF 3477-ACS. The Bruker (Siemens) SMART CCD diffraction facility was established at the University of Idaho with the assistance of the NSF-EPSCoR program and the M. J. Murdock Charitable Trust, Vancouver, WA, USA.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SAINT-Plus. Version 6.22. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2002). SMART. Version 5.626. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

